RUTGERS New Jersey Agricultural Experiment Station

20"0 Turfgrass Proceedings

The New Jersey Turfgrass Association

In Cooperation with Rutgers Center for Turfgrass Science Rutgers Cooperative Extension

2010 RUTGERS TURFGRASS PROCEEDINGS

of the

GREEN EXPO Turf and Landscape Conference December 7-9, 2010 Trump Taj Mahal Atlantic City, New Jersey

The Rutgers Turfgrass Proceedings is published yearly by the Rutgers Center for Turfgrass Science, Rutgers Cooperative Extension, and the New Jersey Agricultural Experiment Station, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey in cooperation with the New Jersey Turfgrass Association. The purpose of this document is to provide a forum for the dissemination of information and the exchange of ideas and knowledge. The proceedings provide turfgrass managers, research scientists, extension specialists, and industry personnel with opportunities to communicate with co-workers. Through this forum, these professionals also reach a more general audience, which includes the public.

This publication includes lecture notes of papers presented at the 2010 GREEN EXPO Turf and Landscape Conference. Publication of these lectures provides a readily available source of information covering a wide range of topics and includes technical and popular presentations of importance to the turfgrass industry.

This proceedings also includes research papers that contain original research findings and reviews of selected subjects in turfgrass science. These papers are presented primarily to facilitate the timely dissemination of original turfgrass research for use by the turfgrass industry.

Special thanks are given to those who have submitted papers for this proceedings, to the New Jersey Turfgrass Association for financial assistance, and to Barbara Fitzgerald, Anne Diglio, and Anne Jenkins for administrative and secretarial support.

> Dr. Ann Brooks Gould, Editor Dr. Bruce B. Clarke, Coordinator

IMMUNOBLOT SCREENING FOR PRESENCE OF *NEOTYPHODIUM* SPP. IN PERENNIAL RYEGRASS (*LOLIUM PERENNE* L.)

Jeanne S. Peters, William A. Meyer, Stacy A. Bonos, James A. Murphy, and Thomas J. Gianfagna¹

Perennial ryegrass (*Lolium perenne* L.) is a coolseason, bunch type grass that performs well in a wide variety of soil conditions. It is often planted in mixtures with slower germinating grasses such as Kentucky bluegrass (*Poa pratensis* L.) and the fine fescues (*Festuca* spp.) to help prevent soil erosion during lawn establishment. Perennial ryegrass is also an important pasture and forage grass included in many pasture seed mixes and is also used in the southern United States for overseeding winter dormant lawns and athletic facilities.

Turfgrass breeders and researchers are continuing to research the beneficial role of endophytes in turfgrasses. Endophytes are naturally occurring fungi that live within the leaf, sheath, and stem tissues of certain grasses. Many perennial ryegrasses infected with the *Neotyphodium lolii* endophyte have enhanced insect resistance and stress tolerance. This endophyte also produces alkaloids which can cause toxicosis in livestock, thus perennial ryegrass es used for pasture need to be screened for endophyte. Perennial ryegrass infection with *N. lolii* can be determined either microscopically or immunologically.

We have screened seeds from perennial ryegrass trials established in 2010 for the presence of endophyte (*Neotyphodium* spp.) using a solid phase stacked immunoblot assay in which monoclonal antibodies generated to *Neotyphodium* spp. cell wall proteins will react to *Neotyphodium* spp. proteins present in perennial ryegrass seeds. The limit of detection of *Neotyphodium* spp. in seed is 50 ng/seed and in tillers it is 50 ng/1.6 mm tiller cross section. Immunoblot screening is a more rapid and accurate technique for *Neotyphodium* identification compared to microscopy (Koh, 2006).

PROCEDURES

Immuno Tissue Printing

Seeds were screened from 88 cultivars/selections established at the Plant Biology and Pathology Research and Extension Farm in Adelphia, NJ for endophyte using an immunoblot kit from Agrinostics, Ltd. Co. (Watkinsville, GA, USA). The seeds (100 per cultivar/selection) were surface sterilized in 5% (w/v) NaOH for 1 h and then rinsed with copious amounts of water and allowed to dry. A sponge was fitted into a container and wetted with extraction buffer solution. A piece of blotting paper was placed on the sponge followed by a nitrocellulose membrane. The surface sterilized seeds were placed on the nitrocellulose membrane and incubated at 45°C overnight.

The seeds were removed from the nitrocellulose membrane and blocking solution was added to the nitrocellulose membrane for 30 minutes while shaking. The blocking solution was decanted and the primary antibody consisting of the monoclonal antibody to *Neotyphodium* spp. cell wall protein was added to the membrane. The membrane was incubated for 1 h while shaking. The blot was rinsed in blocking solution and then incubated with goat anti-mouse antibody for 1 h while shaking. The secondary antibody has a color reactive enzyme conjugated to it. Excess antibody was removed by washing in blocking solution.

A chromogen solution is added and color develops wherever membrane-bound *Neotyphodium* spp. protein is present. The presence of chromogen is usually in the shape of the seed.

¹Research Assistant, Professor, Associate Professor, Extension Specialist in Turfgrass Management, and Professor, respectively, New Jersey Agricultural Experiment Station, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520.

RESULTS AND DISCUSSION

Results are shown in Table 1. The range of endophyte infection in the cultivars/selections ranged from a high of 100% to a low of 1%. There were three cultivars/selections (PR-909, PST-2K9, and PRX-46GMI) with infection rates of 100% (100 seeds tested/cultivar). There were also three cultivars/selections (Linn, Sienna, and Pinnacle) that had infection rates less than 10% (100 seeds tested/cultivar). A majority of the of the cultivars/selections (58%) tested had *Neotyphodium* infection rates \geq 80% (100 seeds/cultivar), while only 10% had an infection rate of \leq 25%.

Endophyte infected perennial ryegrass cultivars are useful in certain stress situations but also need to be avoided for pasture. The results indicate that immunoblot screening for *Neotyphodium* spp. in perennial ryegrass can be used as a tool for determining which cultivar to use for either recreational/residential seed mix or for pasture seed mix.

ACKNOWLEDGMENTS

This work was conducted as part of NJAES project 12180, supported by the New Jersey Agricultural Experiment Station, State and Hatch Act funds, and the Rutgers Center for Turfgrass Science

REFERENCES

Koh, S., M. Vicari, J. P. Ball, T. Rakocevic, S. Zaheer, D. S. Hik, and D. R. Bazely. 2006. Rapid detection of fungal endophytes in grasses for largescale studies. Func. Ecol. 20:736-742.

Cultivar or Selection		Neotyphodium É (%)	Neotyphodium Œ (%)
NT-1	Rinova	95	5
NT-2	CL-11601	77	23
NT-3	PR-909	100	0
NT-4	CL-11701	75	25
NT-5	APR-2036	91	9
NT-6	Linn	4	146
NT-7	Uno	79	21
NT-8	DLF-LGD-3206	57	43
NT-9	DLF-LGD-3022	94	6
NT-10	PSRX-S84	96	7
NT-11	SRX-4RHD	87	13
NT-12	PO2	70	30
NT-13	585	89	11
NT-14	LTP-RAE	87	13
NT-15	Allonte	25	81
NT-16	Insight	13	87
NT-17	Sienna	3	98
NT-18	Brightstar SLT	73	27
NT-19	CL-307	68	33
NT-20	APR-2320	92	7
NT-21	APR-2038	81	20
NT-22	PRG-PR121	99	1
NT-23	PDG-PR128	84	16
NT-24	PPG-PR133	93	7
NT-25	PPG-PR134	88	13
NT-26	LTP-PR135	83	17
NT-27	PRG-PR136	91	9
NT-28	PPG-PR137	86	14
NT-29	PPG-PR138	21	80
NT-30	PPG-PR140	86	14
NT-31	PPG-PR142	99	1
NT-32	PPG-PR143	87	13
NT-33	PPG-PR164	95	5
NT-34	PPG-PR165	81	19
NT-35	BAR Lp 10969	99	1

Table 1.Percent Neotyphodium infection (100 seeds per cultivar) in perennial ryegrass cultivars and
selections in a turf trial established in 2010 at Adelphia, NJ.

Table 1 (continued).

Cultivar or Selection		Neotyphodium + (%)	Neotyphodium 僅 (%)
NT-36	BAR Lp 10972	82	18
NT-37	BAR Lp 10970	78	22
NT-38	2NJK	97	3
NT-39	BAR Lp 7608	97	3
NT-40	Pinnacle	1	99
NT-41	APR-2445	93	7
NT-42	Fiesta 4	84	16
NT-43	GO-G37	62	38
NT-44	CS-20	82	18
NT-45	ISG-36	20	80
NT-46	ISG-31	74	26
NT-47	A-35	89	13
NT-48	CS-PR66	68	34
NT-49	CST	80	20
NT-50	JR-178	96	4
NT-51	JR-192	96	4
NT-52	PSRX-3701	94	6
NT-53	Pick 10401	94	6
NT-54	Machl	92	8
NT-55	RAD-PR62	62	38
NT-56	RAD-PR55R	65	33
NT-57	IS-PR409	53	47
NT-58	IS-PR463	86	14
NT-59	IS-PR469	66	34
NT-60	IS-PR479	62	38
NT-61	IS-PR487	97	3
NT-62	IS-PR488	66	34
NT-63	IS-PR489	83	17
NT-64	IS-PR491	91	8
NT-65	IS-PR492	74	26
NT-66	BLF-LGT 4182	25	75
NT-67	ISG-30	55	45
NT-68	PST-204D	92	8
NT-69	PST-2NKM	92	8
NT-70	PST-2DR9	74	26
NT-71	PST-2MG7	97	3
NT-72	PST-2TQL	59	51
NT-73	PST-2AG4	22	78
NT-74	PST-2MAGS	94	6
NT-75	PST-2K9	100	0 (Continu

(Continued)

Table 1 (continued).

	tivar or ection	Neotyphodium + (%)	Neotyphodium (-) (%)
NT-76	PST-2BNS	89	11
NT-77	PST-2ACR	72	28
NT-78	Rio Vista	67	33
NT-79	CL-301	93	7
NT-80	Bonneville	98	2
NT-81	PSRX-4CAGL	53	47
NT-82	GO-PHS	81	19
NT-83	GO-PR60	71	29
NT-84	GM3	99	1
NT-85	PRX-46GMI	100	0
NT-86	SRX-45MH	97	3
NT-87	Pick4DFHM	66	34
NT-88	Palmer V	67	33