

2012 Turfgrass Proceedings

The New Jersey Turfgrass Association

In Cooperation with Rutgers Center for Turfgrass Science Rutgers Cooperative Extension

2012 RUTGERS TURFGRASS PROCEEDINGS

of the

GREEN EXPO Turf and Landscape Conference December 4-6, 2012 Trump Taj Mahal Atlantic City, New Jersey

The Rutgers Turfgrass Proceedings is published yearly by the Rutgers Center for Turfgrass Science, Rutgers Cooperative Extension, and the New Jersey Agricultural Experiment Station, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey in cooperation with the New Jersey Turfgrass Association. The purpose of this document is to provide a forum for the dissemination of information and the exchange of ideas and knowledge. The proceedings provide turfgrass managers, research scientists, extension specialists, and industry personnel with opportunities to communicate with co-workers. Through this forum, these professionals also reach a more general audience, which includes the public.

This publication includes lecture notes of papers presented at the 2012 GREEN EXPO Turf and Landscape Conference. Publication of these lectures provides a readily available source of information covering a wide range of topics and includes technical and popular presentations of importance to the turfgrass industry.

This proceedings also includes research papers that contain original research findings and reviews of selected subjects in turfgrass science. These papers are presented primarily to facilitate the timely dissemination of original turfgrass research for use by the turfgrass industry.

Special thanks are given to those who have submitted papers for this proceedings, to the New Jersey Turfgrass Association for financial assistance, and to Barbara Fitzgerald, Anne Diglio, and Ann Jenkins for administrative and secretarial support.

> Dr. Ann Brooks Gould, Editor Dr. Bruce B. Clarke, Coordinator

IMMUNOBLOT SCREENING FOR PRESENCE OF NEOTYPHODIUM SPP. IN TALL FESCUE (FESTUCA ARUNDINACEA)

Jeanne S. Peters, William A. Meyer, Stacy A. Bonos, James A. Murphy, Melissa M. Mohr, Ronald F. Bara, Dirk A. Smith, and Thomas J. Gianfagna¹

Tall fescue (*Festuca arundinacea* Schreb.) is a cool-season, bunch type grass that performs well in a wide variety of soil conditions. Tall fescue is a non-native grass that is the most heat tolerant of the cool season grasses. It is well adapted for use in the "transition zone" of the southeast and the mid-Atlantic regions of the United States. It is used for forage and for lawns as it is low maintenance and will tolerate moderate traffic and infrequent mowing.

Most tall fescue contains an endophyte that is a naturally occurring fungus (*Neotyphodium coenophialum*) that lives within the leaf, sheath, and stem tissues of certain grasses. Tall fescues infected with the *Neotyphodium* endophyte have enhanced insect resistance and stress tolerance, but this fungus also produces alkaloids that can cause toxicosis in livestock. As a result, tall fescues intended for pasture use must be screened for endophyte. This can done microscopically, but immunoblot screening is a more rapid and accurate technique (Koh et al., 2006).

Seed from the National Turfgrass Evaluation Program (NTEP) Tall Fescue Trials established in 2012 was screened for the presence of endophyte using a solid phase stacked immunoblot assay in which monoclonal antibodies generated to cell wall proteins of the endophyte will react to *Neotyphodium* proteins present in tall fescue seeds. The limit of detection of *Neotyphodium* in seed is 50 ng *Neotyphodium* protein/seed and in tiller it is 50 ng *Neotyphodium* protein/1.6 mm tiller cross section.

PROCEDURES

Seed from 116 entries established at the Plant Biology and Pathology Research and Extension Farm in Adelphia, NJ was screened for endophyte using an immunoblot kit from Agrinostics, Ltd. Co. (Watkinsville, GA, USA). The seeds (100 per cultivar/ selection) were surface sterilized in 5% (w/v) NaOH for 1 h, rinsed with copious amounts of water, and allowed to dry. A sponge was fitted into a container and wetted with extraction buffer solution. A piece of blotting paper was placed on the sponge followed by a nitrocellulose membrane. The surface sterilized seeds were placed on the nitrocellulose membrane and incubated at 45°C overnight.

The seeds were removed from the nitrocellulose membrane, and blocking solution was added to the nitrocellulose membrane for 30 minutes while shaking. The blocking solution was decanted and the primary antibody consisting of the monoclonal antibody to Neotyphodium cell wall protein was added to the membrane. The membrane was incubated for 1 h while shaking. The blot was rinsed in blocking solution and then incubated with goat anti-mouse antibody for 1 h while shaking. The secondary antibody has a color reactive enzyme conjugated to it. Excess antibody was removed by washing in blocking solution. A chromogen solution was added; color develops wherever membrane-bound Neotyphodium protein is present. The presence of chromogen is usually in the shape of the seed.

RESULTS AND DISCUSSION

Results are shown in Table 1. Endophyte infection in the entries ranged from a high of 100% to a low of 0%. Endophyte was not detected (0%) in two cultivars, and infection in another eight cultivars was less than 20%. A majority of the cultivars (70%) tested had *Neotyphodium* infection levels that were \geq 90%; infection in the remaining 25 cultivars was between 20 and 90%. Selections with \geq 90% infection levels

¹Research Assistant, Research Professor, Associate Professor, Extension Specialist in Turfgrass Management, Field Researcher IV, Laboratory Researcher II, Principal Laboratory Technician, and Research Professor, respectively, New Jersey Agricultural Experiment Station, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520.

meet the legal requirements for breeding and for use at airports attempting to reduce geese and migratory bird populations in take off and landing zones.

Endophyte-infected tall fescue cultivars are useful in certain stress situations but must be avoided for pasture. The results indicate that immunoblot screening for *Neotyphodium* in tall fescue can be used as a tool for determining which cultivars to use in recreational/residential or pasture seed mixes.

ACKNOWLEDGMENTS

This work was conducted as part of NJAES project 12180, supported by the New Jersey Agricultural Experiment Station, State and Hatch Act funds, and the Rutgers Center for Turfgrass Science

REFERENCES

Koh, S., M. Vicari, J. P. Ball, T. Rakocevic, S. Zaheer, D. S. Hik, and D. R. Bazely. 2006. Rapid detection of fungal endophytes in grasses for largescale studies. Func. Ecol. 20:736-742.

Entry	Number	Neotyphodium (%)	
1	Terranova	0	
2	KY-31	86	
	Regenerate	88	
	Fesnova	86	
	ZW-44	97	
	W45	96	
7	U43	100	
8	LSD	100	
9	Aquaduct	86	
	Catalyst	94	
	Marauder	52	
12	Warhawk	97	
13	Annihalator	100	
14	Comp. Res. SST	100	
15 2	204 Res. BLK4	98	
	JS819	27	
17 .	JS818	100	
18 .	JS809	100	
19 .	JS916	98	
20	JS825	41	
21	MET1	100	
22	F711	91	
23	S-TF 291	95	
24	S-TF 276 M2	74	
25	S-TF 305SEL	92	
26	S-TF 269SEL	84	
27	S-TF 282 M2	89	
28	S-TF 284 M2	93	
29	OR21	19	
30	TY10	40	
	Gxp-TF-09	12	
	TPC	96	
	WEI	100	
34	W43	99	
35	Grade 3	96	

Table 1.Percent Neotyphodium infection (100 seeds per cultivar) in tall fescue entries in a turf trial established in 2012 at Adelphia, NJ.

Entr	ry Number	Neotyphodi (%)	ium
36	POI	93	
37	U45	88	
38	B23	100	
39	ATF 1612	95	
40	ATF 1704	95	
41	BURL TF-2	98	
42	BURL TF-136	100	
43	LTP-FSD	98	
44	LTP-TW U6	100	
45	LTP-FSDPDR	98	
46	IS-TF- 289	90	
47	MET6 SEL	95	
48	IS-TF 330	56	
49	TF-287	78	
50	IS-TF 307 SEL	62	
51	IS-TF 308 SEL	91	
52	IS-TF 311	91	
53	IS- TF 285	97	
54	IS TF 310 SEL	93	
55	IS TF 272	54	
56	ATF 1736	91	
57	ATF 1754	97	
58	HEM1	100	
59	Firebird 2	95	
60	Bullseye	97	
61	PST-5EV2	99	
62	5GRB	97	
63	5 SALT	94	
64	PST-5SDT	74	
65	PST-5DZP	0	
66	5R05	95	
67	PST-5BPO	96	
68	PST-5BRK	100	
69	DB1	100	
70	RZ2	98	
71	TD1	99	(Continued)
72	DZ1	94	
73	T31	92	
74	PSGGSD	3	
75	PSG 8BP2	4	

Table 1. Neotyphodium infection in tall fescue, 2012 (continued).

(Continued)

Entry Number		Neotyphodium (%)	
76	PSGTT4	92	
77	FAITH	68	
78	K12-13	82	
79	K12-05	98	
80	PPG-TF156	96	
81	PPG-TF 157	97	
82	PPG-TF 169	92	
83	PPG-TF 170	100	
84	PPG-TF 137	92	
85	PPG-TF 135	98	
86	PPG-TF 115	88	
87	PPG-TF 105	98	
88	PPG-TF 172	94	
89	PPG-TF 151	96	
90	PPG-TF 152	85	
91	PPG-TF 148	92	
92	PPG-TF 150	97	
93	Bizem	93	
94	CCR2	98	
95	MET-3	92	
96	W41	94	
97	PPG TF-145	6	
98	PPG TF-138	56	
99	PPG-TF 139	84	
100	PPF-TF 142	20	
101	RAD TF 89	89	
102	RAD TF 92	96	
103	GO-DF12	70	
104	K12-MCD	93	
105	PST-5EX2	94	
106	SMVD	94	
107	RAD TF 83	97	
108	RAD TF 88	90	
109	BAR Fa 12078	81	
110	BAR Fa 121089	96	
111	BAR Fa 121091	100	
112	BAR Fa 121095	98	
113	PST-R5NW	5	
114 115	BURL TF 69 Falcon IV	97 0 (Conti	nued)

Table 1. Neotyphodium infection in tall fescue, 2012 (continued).

(Continued)

Table 1. Neotyphodium infection in tall fescue, 2012 (continued).

Entry Number	Neotyphodium (%)	
116 Falcon V	96	