

2020 Turfgrass Proceedings

The New Jersey Turfgrass Association

In Cooperation with Rutgers Center for Turfgrass Science Rutgers Cooperative Extension

2020 RUTGERS TURFGRASS PROCEEDINGS

The Rutgers Turfgrass Proceedings is published yearly by the Rutgers Center for Turfgrass Science, Rutgers Cooperative Extension, and the New Jersey Agricultural Experiment Station, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey in cooperation with the New Jersey Turfgrass Association. The purpose of this document is to provide a forum for the dissemination of information and the exchange of ideas and knowledge. The proceedings provide turfgrass managers, research scientists, extension specialists, and industry personnel with opportunities to communicate with co-workers. Through this forum, these professionals also reach a more general audience, which includes the public. This proceedings includes research papers that contain original research findings and reviews of selected subjects in turfgrass science. These papers are presented primarily to facilitate the timely dissemination of original turfgrass research for use by the turfgrass industry.

Special thanks are given to those who have submitted papers for this proceedings, to the New Jersey Turfgrass Association for financial assistance, and to Anne Diglio and Barbara Fitzgerald for administrative support.

> Deborah Spinella, Proceedings Layout Editor Dr. James A. Murphy, Coordinator

TALL FESCUE PERFORMANCE AT RUTGERS HORT. FARM NO. 2 DURING 2020

Bradley S. Park and James A. Murphy¹

INTRODUCTION

Tall fescue (*Schedonorus arundinaceus* [Schreb.] Dumort. syn. *Festuca arundinacea* Schreb. syn. *Lolium arundinaceum* [Schreb.] Darbysh.) is frequently established on sports fields and other recreational surfaces in New Jersey due to its wear tolerance and adaptation to Mid-Atlantic climatic conditions (Beard, 1973). The evaluation of tall fescue traffic tolerance continues to be a research priority at Rutgers Center for Turfgrass Science.

The Rutgers Wear Simulator (RWS; Bonos et al., 2001) and Cady Traffic Simulator (CTS; Henderson et al., 2005) are used to impart traffic stresses on turf plots at Rutgers Hort. Farm No. 2. The traffic tolerance of entries comprising the 2012 National Turfgrass Evaluation Program (NTEP) Tall Fescue test were assessed using a combination of the CTS and RWS; results were reported in previous Rutgers Turfgrass Proceedings (Park et al., 2014, 2015, 2016, 2018).

The 2018 NTEP Tall Fescue test was seeded at Rutgers Hort. Farm No. 2 in September 2018. The response of these entries to autumn 2019 traffic as well as the performance of these entries in the absence of traffic was recently described by Park and Murphy (2020). The objective of this report is to summarize the performance of cultivars and experimental selections in the 2018 NTEP Tall Fescue Test subjected to summer traffic during 2020.

MATERIALS AND METHODS

Evaluation Trial

The 132 entries of the 2018 Tall Fescue Trial were seeded at 6.0 lb seed per 1000 ft² into 5 x 6-ft plots on a well-drained loam (sand=44%; silt=31%; clay=25%) at Rutgers Hort. Farm No. 2 in North Brunswick, NJ on 21 September 2018.

Soil samples were extracted from two depths in June 2020: 0 to 1.0-inch (including organic matter); and 1.0 to 6.7-inch. Soil test results from 0.0 to 1.0-inch indicated that the soil pH was 5.2; soil phosphorous (P) and potassium (K) were 107 and 644 lb per acre (Mehlich 3), respectively. The soil pH was 5.5 at the 1.0 to 6.7-inch depth; soil P and K were 110 and 344 lb per acre, respectively.

A total of 2.9 lb N per 1000 ft² was applied during 2020 (0.6, 0.5, 0.6, 0.5 and 0.7 lb N per 1000 ft² on 16 March, 23 April, 12 May, 15 June, and 6 September 2020, respectively). Calcitic lime (79 lb per 1000 ft²) was applied to the test area during autumn 2020 based on soil test results.

The test was mowed approximately two times per week at a height of 1.5-inch. Evapotranspiration data were used to guide irrigation system programming with the primary goal to avoid excessive wetness or tall fescue developing severe drought stress symptoms.

Weed, disease, and insect pests were controlled during 2020 to improve assessment of tall fescue entry responses to traffic. Herbicides were applied for postemergence suppression of annual bluegrass (Poa annua L.) during autumn 2019 (ethofumesate) and spring 2020 (amicarbazone + mesotrione). Preemergence control of crabgrass (Digitaria spp.) and preventative control of white grubs (Phyllophaga spp.) were achieved using dithiopyr and chlorantraniliprole, respectively. Turfgrass diseases including brown patch (caused by Rhizoctonia solani), gray leaf spot (caused by Pyricularia grisea), dollar spot (caused by Clarireedia jacksonii) and Pythium spp. were controlled preventatively by rotating fungicide active ingredients: fluazinam, cyazofomid, penthiopyrad, azoxystrobin+propiconazole, thiophanate-methyl, and chlorothalonil.

¹Sports Turf Education and Research Coordinator and Extension Specialist in Turfgrass Management. New Jersey Agricultural Experiment Station, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520.

Application of Wear and Traffic Stresses

Traffic was initiated during autumn 2019 and was applied to this test as a strip-plot across approximately ½ of each tall fescue plot (Park and Murphy, 2020). The other approximate ½ of each plot did not receive traffic (no traffic). Summer 2020 traffic consisted of 36 traffic passes using a combination of the RWS (18 passes) and CTS (18 passes) from 6 July to 20 August 2020. Machine passes during summer 2020 were made across the same strip-plot in which passes were made during autumn 2019. The RWS was operated at ground speed of 2.5 miles per hour (mph) and 250 rpm for the paddles. The CTS was operated at a speed of 1.0 mph in the forward direction. Every other pass of each machine was made in the opposite direction.

Evaluation of the Effects of Traffic

Tall fescue entries within traffic and no traffic strip-plots were visually assessed for uniformity of turf cover (1 to 9 scale; 9=most complete turf cover) and fullness of turfgrass canopy (0 to 100% scale; 100% = full canopy) after summer 2020 traffic. Images of tall fescues within traffic and no traffic strip-plots were captured using a digital camera (Canon PowerShot G12; Canon USA, Inc., Lake Success, NY) positioned in an enclosed box equipped with artificial lighting. Individual digital image size was 1600 x 1200 pixels and camera settings included a shutter speed of 1/40 s, and aperture of F2.8, and ISO of 100 and a focal length of 7 mm.

Images were imported into SigmaScan Pro (v. 5.0, SPSS, Inc., Chicago, IL) to determine green cover (0 to 100% scale; 100%=complete green cover). A hue range of 50 to 107 and a saturation range of 0 to 100 were used in the software to identify green leaves in the images.

Annual bluegrass encroachment into tall fescue with traffic and no traffic strip-plots was visually evaluated on 28 October 2020; a 0 to 100% scale was used where 100% equaled complete annual bluegrass cover.

These data were analyzed using a 2×132 factorial of traffic and tall fescue entries arranged in a strip-plot design with three replications. Horizontal strip-plots were the level of traffic (no traffic and traffic). Vertical strip-plots were the 132 tall fescue entries. Data were subjected to analysis of variance and

means were separated using the Fisher's protected least significant difference (LSD) test at $p \le 0.05$.

Evaluation of Tall Fescue in the Absence of Traffic

The no traffic strip across each tall fescue plot was visually assessed for spring green-up on 30 March 2020 and turfgrass quality each month from April through October 2020. A 1 to 9 rating was utilized for both parameters where 9 equaled the best spring green-up and turfgrass quality.

Analysis of variance was performed on these data as a single factor randomized complete block design with three replications. Means were separated using Fisher's protected least significant difference (LSD) test at $p \le 0.05$.

RESULTS

Generally, traffic reduced the uniformity of turf cover, fullness of turfgrass canopy (FTC), and green cover of tall fescue during summer 2020 (Table 1). Additionally, there was greater annual bluegrass cover in traffic strip-plots compared to the no traffic strip-plots on 28 October 2020. There were no green cover differences among tall fescue entries regardless of the traffic level. There were differences among tall fescue entries for uniformity of turf cover, FTC, annual bluegrass cover. The FTC response among tall fescue entries depended on the level of traffic.

Nearly one-half of the tall fescue cultivars and experimental selections in the test (61 entries) had the best uniformity of turf cover across both traffic levels; 62 entries had the poorest uniformity of turf cover (Table 2).

All entries had lower FTC when trafficked compared to no traffic (Table 2). Entries with the greatest FTC after summer traffic were GLX ACED (PST-5DART), Degas (LTP-TF-111), RH3, PPG-TF-306, TF456, DLFPS-321/3699, Moondance, PPG-TF-231, PPG-TF-318, Paramount, TD2, DLFPS-321/3696, K18-RS6, Grande 3, PST-5DC24, PPG-TF-313, JT 233, AST8118LM, PST-5GLBS, PPG-TF-267, O'Keefe (OLTP-TF-122), TF445, Firehawk SLT, ZRC1, PPG-TF-338, K18-ROE, PST-5BYOB, 3B2, Hemi, Raptor III, 3N1, DLFPS-321/3707, and NAI-ROS4. Fifty-four (54) entries had the lowest FTC after traffic; entries with exceptionally low FTC after traffic (< 30%) were NAI-FQZ-17, AH1, GO-AOMK, SE5STAR, NAI-ST5, ATF 1768, BAR-FA8230, RAD-TF 115 (Turbo SS), and SETFM2.

Eighty-two (82) entries had the least annual bluegrass cover on 28 October 2020; BAR 9FE MAS and Kentucky-31 had the greatest annual bluegrass cover (Table 2). Other entries with 30% or more annual bluegrass cover were JT-517, Tango, PST-5DZM, BAR-FA8230, NAI-FQZ-17, NAI-TUE, and OG-WALK.

Performance of Tall Fescue Without Traffic

Forty-three (43) cultivars and experimental selections had the best average turf quality during 2020; Kentucky-31 and OG-WALK had the poorest average turf quality during 2020 (Table 3). Other entries with poor average turf quality (< 4.0) during 2020 were PST-5MINK, PST-5THM, Bandit, Grand Prix (FC15-01P), ATF 1768, AST8218LM, RAD-TF 115 (Turbo SS), Escalade, Naturally Green, BAR-FA8230, Palomar, BAR 9FE MAS, and BAR FA 8228.

Twenty-four (24) entries had the best average turf quality during 2019-2020; seventy-four entries maintained acceptable or better (\geq 6.0) average turf quality during 2019-2020 (Table 3). Fifteen (15) cultivars and experimental selections exhibited poor average turf quality (< 4.0) during 2019-2020; Kentucky 31 had the poorest average turf quality during these two seasons.

Twenty-six (26) entries exhibited the best spring green-up on 30 March 2020 (Table 3). Twentythree (23) entries exhibited poor spring green-up (< 4.0); entries with the poorest spring green-up were DLFPS-321/3696, RAD-TF0.0, Copious TF, JT 233, Bonfire (JS-DTT), DLFPS-321/3708, Tango, NAI-TUE, PST-5DC24, GO-AOMK, NAI-FQZ-17, RAD-TF 115 (Turbo SS), and PST-5MINK.

DISCUSSION

The 132 cultivars and experimental selections that comprise this trial represent a wide breadth of tall fescue germplasm and breeding efforts; average turf quality means during 2019 through 2020 were 1.0 to 8.3. National Turfgrass Evaluation Program results at Rutgers University and other NTEP university partners are particularly beneficial for seed company personnel charged with making decisions on whether to commercialize experimental selections.

Sports field managers, golf course superintendents, landscapers, sod producers and other turfgrass practitioners can use NTEP results to make data-based cultivar decisions for the facilities they manage. Results also provide university extension and outreach personnel a means to deliver nonbiased recommendations to end users in the form of presentations, reports, and fact sheets.

REFERENCES

- Beard, J.B. 1973. Turfgrass: Science and Culture. Prentice-Hall. Englewood Cliffs, NJ
- Bonos, S.A., E. Watkins, J.A. Honig, M. Sosa, T. Molnar, J.A. Murphy and W.A. Meyer. 2001. Breeding cool-season turfgrasses for wear tolerance using a wear simulator. Int. Turf Soc Res. J. 9:137-145.
- Henderson, J.J., J.L. Lanovaz, J.N. Rogers III, J.C. Sorochan, and J.T. Vanini. 2005. A new apparatus to simulate athletic field traffic: The Cady Traffic Simulator. Agron. J. 97:1153-1157.
- Park, B.S. and J.A. Murphy. 2020. Tall fescue performance at Rutgers Hort. Farm No. 2. Rutgers Turf Proc. 51:223-242.
- Park, B.S., J.A. Murphy, and J.B. Clark. 2018. Trafficked and non-trafficked tall fescue performance at Rutgers Horticultural Research Farm II during 2017. Rutgers Turf Proc. 49:225-252.
- Park, B.S., J.A. Murphy, H. Chen, and J.B. Clark. 2016. The 2012 NTEP Tall Fescue Test: Results at Rutgers Horticultural Research Farm II during 2015. Rutgers Turf Proc. 47:203-224.
- Park, B.S., J.A. Murphy, H. Chen, and J.B. Clark. 2015. Tall fescue research at the Rutgers Horticultural Research Farm II during 2014. Rutgers Turfgrass Proc. 46:203-224.
- Park, B.S., J.A. Murphy, H. Chen, J.B. Clark, and W.A. Meyer. 2014. Tall fescue research at the Rutgers Horticultural Research Farm No. 2 during 2013. Rutgers Turfgrass Proc. 45:241-252.

	Uniformity of Turf Cover ¹	25 Aug. 2020 Fullness of Turfgrass Canopy ²	Green Cover ³	Annual bluegrass⁴ 28 Oct. 2020
	1 to 9 Scale	0 to 100% S	Scale	
Level of Traffic⁵ No Traffic	8.9	97	84	11
Source of Variation	4.1	43	40	20
Traffic	*	**	*	***
Entry Traffic x Entry	NS	*	NS	NS
CV (%)	15.8	14	12.9	31.9

Table 1. Uniformity of cover, fullness of turf canopy, and green cover as affected by traffic and tall fescue entry during summer 2020.

 $^{1}9 = most complete turf cover$

 $^{2}100\% = \text{full canopy}$

³100% = complete green cover; measured by digital image analysis

⁴100% = complete annual bluegrass cover

⁵Thirty-six traffic passes were made using a combination of the Rutgers Wear Simulator (18 passes) and Cady Traffic Simulator (18 passes) during 6 July to 20 August 2020

NS,*,**,*** Nonsignificant and significant at the 0.05, 0.01 and 0.001 probability level

	Tall fescue entry	Uniformity of Turf Cover ¹	Fullne Turfgrass No Traffic	ss of Canopy² Traffic⁴	Annual bluegrass ³ 28 Oct. 2020
		1 to 9 Scale	(0 to 100% Scale	}
1 2 3 4	GLX ACED (PST-5DART) RH3 Degas (LTP-TF-111) PPG-TF-306	8.0 7.7 7.7 7.3	95 98 98 100	67 65 65 62	10 10 19 13
5	TF456	7.2	98	62	19
6 7 8 9 10	DLFPS-321/3699 Moondance PPG-TF-231 PPG-TF-318 Paramount	7.5 7.3 7.0 7.0 7.2	100 98 100 100 100	60 60 60 58	21 23 17 18 17
11 12 13 14 15	K18-RS6 TD2 DLFPS-321/3696 Grande 3 PST-5DC24	7.3 7.3 7.2 6.7	100 100 97 98 95	57 57 57 57 57 55	10 14 14 23 19
16 17 18 19 20	PPG-TF-313 JT 233 AST8118LM PST-5GLBS PPG-TF-267	7.5 7.3 7.3 6.8 6.7	98 100 92 93 100	53 53 53 53 53 53	21 14 17 23 7
21 22 23 24 25	O'Keefe (OLTP-TF-122) TF445 Firehawk SLT PPG-TF-338 ZRC1	7.0 7.0 6.7 7.2 7.2	100 100 100 100 100	52 52 52 50 50	16 18 28 13 18
26 27 28 29 30	K18-ROE PST-5BYOB 3B2 Raptor III Hemi	7.0 7.0 7.0 6.8 6.8	97 93 98 100 95	50 50 50 50 50	18 18 19 20 21

	Tall fescue entry	Uniformity of Turf Cover ¹	Fullne Turfgrass No Traffic	ss of Canopy² Traffic⁴	Annual bluegrass ³ 28 Oct. 2020
		1 to 9 Scale	() to 100% Scale	
31	3N1	6.7	97	50	12
32	DLFPS-321/3707	6.7	100	50	18
33	NAI-ROS4	6.7	100	50	19
34	PPG-TF-336	7.0	100	48	18
35	GO-RH20	6.8	100	48	11
36	Estrena	6.8	100	48	16
37	Fayette	6.7	100	48	14
38	PST-5TRN	6.3	93	48	16
39	RDC	6.7	100	47	13
40	PPG-TF-249	6.7	98	47	13
41	PPG-TF-255	6.7	97	47	14
42	RHL2	6.7	97	47	18
43	K18-NSE	6.7	97	47	22
44	Bonfire (JS-DTT)	6.5	98	47	19
45	PST-5DZM	6.5	95	47	31
46	PPG-TF-315	6.8	97	45	18
47	PST-5GQ	6.8	95	45	19
48	DLFPS-321/3708	6.8	100	45	22
49	PPG-TF-312	6.8	98	45	25
50	PPG-TF-308	6.7	98	45	14
51	PST-5THM	6.7	92	45	16
52	Bullseye	6.7	98	45	18
53	PPG-TF-323	6.7	98	45	18
54	DLFPS-321/3702	6.5	98	45	13
55	ProGold	6.5	97	45	14
56	RS1	6.5	98	45	22
57	JT-517	6.3	98	45	30
58	Padre 2	6.7	97	43	17
59	TMT1	6.7	100	43	18
60	BY-TF-169	6.7	100	43	25

	Tall fescue entry	Uniformity of Turf Cover ¹	Fullne: Turfgrass No Traffic	ss of Canopy² Traffic⁴	Annual bluegrass ³ 28 Oct. 2020
		1 to 9 Scale	(to 100% Scale	
61 62	Tango Monument (PST-5SOB)	6.7 6.3	98 92	43 43	30 13
63	Bullseve LTZ	6.3	100	43	16
64	Palomar	5.8	90	43	28
65	COL-TF-148	7.0	98	42	15
66	DLFPS-321/3705	6.7	97	42	20
67	AH2	6.5	100	42	20
68	RH1	6.3	98	42	13
69	DLFPS-321/3693	6.3	100	42	14
70	DLFPS-321/3695	6.2	98	42	18
71	Escalade	6.0	90	42	29
72	DLFPS-321/3703	6.8	98	40	13
73	PST-5MCMO	6.7	95	40	25
74	DLFPS-TF/3552	6.5	100	40	13
75	DLFPS-321/3679	6.3	97	40	18
76	DLFPS-321/3706	6.3	98	40	29
77	Grand Prix (FC15-01P)	6.2	93	40	23
78	AST8218LM	6.0	90	40	23
79	PPG-TF-320	6.5	100	38	15
80	PPG-TF 305	6.5	100	38	27
81	PPG-TF-337	6.3	100	38	17
82	PPG-TF 316	6.3	98	38	18
83	Lifeguard	6.2	97	38	16
84	K18-WB1	6.2	98	38	17
85	Bravo 2	6.2	97	38	21
86	ATF2116	6.2	90	38	25
87	RAD-TF0.0	6.0	95	38	24
88	Copious TF	6.0	97	38	28
89	Dragster	6.8	100	37	28
90	PPG-TF 244	6.7	98	37	11

	Tall fescue entry	Uniformity of Turf Cover ¹	Fullne Turfgrass No Traffic	ess of Canopy² Traffic⁴	Annual bluegrass ³ 28 Oct. 2020
		1 to 9 Scale	(0 to 100% Scale	
91	SE5302	6.7	95	37	25
92	PST-5MINK	6.3	92	37	24
93	A-TF31	6.3	95	37	24
94	BAR-TF-134	6.3	98	37	28
95	LBF	6.2	95	37	23
96	NAI-TUE	6.2	97	37	34
97	BGR-TF3	6.0	92	37	18
98	BAR FA 8228	5.8	88	37	21
99	NAI-3N2	6.3	98	35	17
100	PPG-TF-257	6.2	100	35	16
101	PPG-TF-254	6.2	97	35	18
102	PST-5E6	6.2	98	35	23
103	SETF104	6.0	95	35	15
104	PPG-TF-238	6.0	98	35	17
105	Burmingham	6.0	97	35	19
106 107 108 109 110	Bandit DLFPS-TF/3553 NT-3 SE5CR1 Naturally Green	5.8 6.2 6.2 6.2 5.8	93 98 98 97 93	35 33 33 33 33 33	24 16 17 24 18
111 112 113 114 115	OG-WALK RC4 5LSS DLFPS-321/3701 PPG-TF-262	5.2 6.2 6.0 6.0 6.0	90 100 100 100 100	33 32 32 32 32 32	35 18 12 14 19
116	DLFPS-321/3694	6.0	100	32	20
117	DLFPS-TF/3550	5.8	98	32	8
118	RHF	5.8	98	32	20
119	SETFM3	5.7	95	32	23
120	BAR 9FE MAS	6.0	90	30	41

	Tall fescue entry	Uniformity of Turf Cover ¹	Fullne Turfgrass No Traffic	ss of Canopy² Traffic⁴	Annual bluegrass ³ 28 Oct. 2020
		1 to 9 Scale	() to 100% Scale	
121	JT 268	5.8	100	30	18
122	RADTF105	5.7	95	30	23
123	Kentucky-31	5.0	77	30	50
124	NAI-FQZ-17	6.0	97	28	33
125	AH1	5.7	100	28	18
126	SE5STAR	5.7	95	28	23
127	GO-AOMK	5.7	95	28	23
128	NAI-ST5	5.8	98	27	28
129	ATF 1768	5.3	92	27	21
130	BAR-FA8230	5.2	88	27	32
131	RAD-TF 115 (Turbo SS)	5.5	92	23	27
132	SETFM2	5.2	90	22	22
	LSD (columns; down) at 5% = LSD (rows; across) at 5% =	1.3 n/a	17 23	3	13 n/a

 $^{1}9 = most complete turf cover$

²100% = full canopy

³100% = complete annual bluegrass cover

⁴Thirty-six traffic passes were made using a combination of the Rutgers Wear Simulator (18 passes) and Cady Traffic Simulator (18 passes) during 6 July to 20 August 2020.

		T	urforass Quality	- Spring	
		2019-2020	2019	2020	Green-up ²
	Tall fescue entry	Ava	Ava	Ava	30 Mar 2020
		, (vg.	, wg.	, trg.	00 Mai: 2020
1	K18-PS6	Q 1	8.3	7 0	67
י ר	IT 268	7.0	8.0	7.9	53
2	DDC_TE_313	7.5	0.0	7.9	6.7
1	PPG-TE-238	7.0	7.5	7.5	6.0
4 5	TD2	7.0	7.3	7.6	7.0
5	102	7.5	7.5	7.0	7.0
6	K18-NSE	7.3	7.1	7.5	7.0
7	ZRC1	7.3	7.1	7.5	6.3
8	PPG-TF-338	7.3	7.1	7.4	5.0
9	K18-WB1	7.2	7.2	7.1	7.7
10	PPG-TF-312	7.2	7.2	7.2	7.3
11	PPG-TF-231	72	6.8	76	7.0
12	PPG-TF-262	7.2	6.9	7.6	6.3
13	RH3	7.2	7 1	7.0	6.3
14	Paramount	7.2	67	77	6.0
15	O'Keefe (OLTP-TF-122)	7.2	7.3	7.0	5.7
	· · · · · · · · · · · · · · · · · · ·				•
16	PPG-TF-267	7.2	6.8	7.6	5.0
17	DLFPS-TF/3552	7.1	6.9	7.3	6.3
18	5LSS	7.1	7.1	7.1	6.3
19	AH2	7.1	7.7	6.4	5.7
20	Estrena	7.0	6.9	7.1	7.0
21	PPG-TF-336	7 0	7.0	7.0	7.0
22	PPG-TF-318	7.0	72	6.9	6.3
23	Bullseve I TZ	7.0	6.5	7.5	47
24	RC4	7.0	7.0	7.0	4.0
25	TF456	6.9	7.0	6.7	7.3
06	DUE	6.0	7 /	6 4	6.0
20		0.9	1.4	0.4	0.U 7 0
21		0.ð	0.Z	7.4	1.3
28	DLFF3-321/3093	0.ð	0.0	7.1	0.7
29	DLFP3-321/3703	0.ð	0.3	1.3	0.0
30	DLFP3-321/3/0/	0.8	o.∠	1.3	0.0

		Turfgrass Quality1			Spring
		2019-2020	2019	2020	Green-up ²
	Tall fescue entry	Avg.	Avg.	Avg.	30 Mar. 2020
.31	AH1	6.8	7 1	6.5	5.3
32	RH1	67	6.6	6.8	7.0
33	NAI-ROS4	67	67	67	7.0
34	RHL2	6.7	7.1	6.3	6.3
35	COL-TF-148	6.7	7.1	6.3	6.0
36	DLFPS-TF/3550	6.7	6.4	6.9	5.7
37	DLFPS-321/3701	6.7	6.3	7.0	5.0
38	DLFPS-TF/3553	6.7	6.6	6.8	4.7
39	DLFPS-321/3696	6.7	5.8	7.5	3.0
40	PPG-TF 244	6.6	6.4	6.9	6.7
41	NAI-3N2	6.6	6.5	6.7	6.3
42	PPG-TF-308	6.6	7.0	6.3	6.0
43	PPG-TF-337	6.6	6.5	6.7	5.0
44	PPG-TF-315	6.6	6.4	6.9	4.7
45	PPG-TF-254	6.5	6.4	6.7	6.7
46	DLFPS-321/3694	6.5	6.3	6.6	6.7
47	GO-RH20	6.5	6.4	6.6	6.0
48	Raptor III	6.5	6.9	6.2	5.7
49	PPG-TF-320	6.5	7.0	6.1	5.3
50	PPG-TF-306	6.5	6.3	6.7	4.7
51	TMT1	6.5	6.5	6.4	4.7
52	PPG-TF-323	6.5	6.4	6.7	4.3
53	Degas (LTP-TF-111)	6.4	6.2	6.5	7.0
54	PPG-TF-257	6.4	6.5	6.3	5.0
55	DLFPS-321/3699	6.4	6.5	6.3	4.7
56	JT 233	6.4	6.7	6.1	2.7
57	Padre 2	6.3	6.2	6.4	6.7
58	Dragster	6.3	6.6	6.0	6.3
59	DLFPS-321/3695	6.3	6.7	5.9	6.0
60	BY-TF-169	6.3	6.6	6.0	5.7

		Turforass Quality1			Spring
		2019-2020	2019	2020	Green-up ²
	Tall fescue entry	Avg.	Avg.	Avg.	30 Mar. 2020
61	PPG-TE-255	63	6.1	6.5	13
62	BAR-TE-13/	6.2	6.4	5.0	4.5
63	RS1	6.2	59	6.5	53
64	Firebawk SI T	6.2	6.3	6.0	5.0
65	TF445	6.2	6.2	6.1	4.3
66	K18-ROE	6.1	6.2	6.0	7.7
67	PPG-TF 316	6.1	6.0	6.2	5.0
68	NT-3	6.1	6.6	5.7	3.3
69	Bonfire (JS-DTT)	6.1	6.3	6.0	2.7
70	DLFPS-321/3705	6.0	5.8	6.3	6.0
71	3N1	6.0	5.6	6.5	5.3
72	DLFPS-321/3706	6.0	5.9	6.1	5.3
73	PPG-TF-249	6.0	6.0	6.0	4.7
74	PPG-TF 305	6.0	5.9	6.0	4.3
75	DLFPS-321/3702	5.9	5.7	6.0	4.0
76	SE5CR1	5.8	6.0	5.6	5.3
77	DLFPS-321/3708	5.8	5.7	6.0	2.7
78	Fayette	5.7	5.2	6.2	7.7
79	3B2	5.7	5.3	6.0	7.0
80	GLX ACED (PST-5DART)	5.7	5.7	5.8	5.7
81	DLFPS-321/3679	5.7	5.1	6.3	5.3
82	SETF104	5.7	5.7	5.7	4.0
83	Hemi	5.6	6.1	5.2	4.0
84	NAI-ST5	5.5	5.8	5.3	3.7
85	Monument (PST-5SQB)	5.3	5.7	4.9	6.7
86	PST-5TRN	5.3	5.4	5.2	4.7
87	PST-5BYOB	5.1	5.2	5.0	6.3
88	ProGold	5.1	5.2	5.0	5.7
89	A-TF31	5.1	5.4	4.9	4.0
90	NAI-TUE	5.1	5.4	4.8	2.3

		Turfgrass Quality1			- Spring
		2019-2020	2019	2020	Green-up ²
	Tall fescue entry	Avg.	Avg.	Avg.	30 Mar. 2020
91	GO-AOMK	5.1	5.2	5.1	1.7
92	PST-5MCMO	5.0	5.0	4.9	5.7
93	Grande 3	5.0	5.2	4.8	5.7
94	RADTF105	5.0	5.1	4.8	3.7
95	PST-5GQ	4.9	4.8	4.9	3.7
96	Lifeguard	4.8	4.6	5.0	5.7
97	RAD-TF0.0	4.8	4.6	5.0	3.0
98	Moondance	4.7	4.6	4.9	6.0
99	PST-5GLBS	4.6	4.5	4.7	6.3
100	Burmingham	4.6	4.8	4.5	6.3
101	Bullseye	4.6	5.0	4.3	5.7
102	PST-5DZM	4.6	4.7	4.6	5.0
103	SE5302	4.6	5.2	4.0	4.7
104	SETFM3	4.5	4.5	4.5	4.7
105	LBF	4.5	4.7	4.2	4.7
106	Bravo 2	4.5	4.3	4.7	3.7
107	SE5STAR	4.5	4.6	4.4	3.7
108	AST8118LM	4.5	4.9	4.1	3.3
109	Tango	4.5	4.2	4.8	2.7
110	PST-5DC24	4.5	4.4	4.7	2.0
111	BGR-TF3	4.3	4.5	4.1	6.7
112	PST-5E6	4.3	4.2	4.3	6.0
113	ATF2116	4.2	4.3	4.0	5.7
114	JT-517	4.2	4.0	4.3	4.7
115	Copious TF	4.2	4.1	4.3	3.0
116	NAI-FQZ-17	4.1	3.7	4.6	1.3
117	PST-5THM	4.0	4.1	3.9	4.7
118	AST8218LM	3.9	4.3	3.5	3.7
119	PST-5MINK	3.9	4.0	3.9	1.0
120	Bandit	3.8	3.9	3.7	5.7

		Ti	Spring		
		2019-2020	2019	2020	Green-up ²
	Tall fescue entry	Avg.	Avg.	Avg.	30 Mar. 2020
121	SETFM2	3.8	3.6	4.0	4.3
122	ATF 1768	3.7	3.9	3.5	4.0
123	Escalade	3.6	4.0	3.2	6.7
124	Grand Prix (FC15-01P)	3.6	3.7	3.5	4.7
125	RAD-TF 115 (Turbo SS)	3.4	3.3	3.4	1.3
126	Naturally Green	3.3	3.4	3.1	4.3
127	BAR-FA8230	3.3	3.9	2.8	3.3
128	BAR 9FE MAS	3.1	3.8	2.4	4.3
129	BAR FA 8228	2.6	2.8	2.4	4.0
130	OG-WALK	2.5	2.8	2.3	4.0
131	Palomar	2.5	2.6	2.4	3.7
132	Kentucky-31	1.1	1.1	1.0	8.7
		4 4	1.0	1.0	2.2
	LSD at 5% =	1.1	1.3	1.3	2.2
	UV (%)	12.1	13.6	14.3	26.0

¹9 = Best turfgrass quality

 $^{2}9 = Best spring green-up$